optimal distribution system reconfiguration using non-dominated sorting genetic algorithm (nsga-ii)

نویسندگان

j. moshtagh

s. ghasemi

چکیده

in this paper, a non-dominated sorting genetic algorithm-ii (nsga-ii) based approach is presented for distribution system reconfiguration. in contrast to the conventional ga based methods, the proposed approach does not require weighting factors for conversion of multi-objective function into an equivalent single objective function. in order to illustrate the performance of the proposed method, 33-bus and 69-bus distribution networks have been employed which have led to the desired results.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal Distribution System Reconfiguration Using Non-dominated Sorting Genetic Algorithm (NSGA-II)

In this paper, a Non-dominated Sorting Genetic Algorithm-II (NSGA-II) based approach is presented for distribution system reconfiguration. In contrast to the conventional GA based methods, the proposed approach does not require weighting factors for conversion of multi-objective function into an equivalent single objective function. In order to illustrate the performance of the proposed method,...

متن کامل

Optimal Distribution System Reconfiguration Using Non- dominated Sorting Genetic Algorithm (NSGA-II)

In this paper, a Non-dominated Sorting Genetic Algorithm-II (NSGA-II) based approach is presented for distribution system reconfiguration. In contrast to the conventional GA based methods, the proposed approach does not require weighting factors for conversion of multi-objective function into an equivalent single objective function. In order to illustrate the performance of the proposed method,...

متن کامل

Voltage Stability Constrained Optimal Power Flow Using Non-dominated Sorting Genetic Algorithm-II (NSGA II)

Voltage stability has become an important issue in planning and operation of many power systems. Contingencies such as unexpected line outages in a stressed system may often result in voltage instability, which may lead to voltage collapse. This paper presents evolutionary algorithm techniques like Genetic Algorithm (GA) and Non-dominated Sorting Genetic Algorithm II (NSGA II) approach for solv...

متن کامل

Optimal Placement of Phasor Measurement Units to Maintain CompleteObservability Considering Maximum Reliability by Non-dominated Sorting Genetic Algorithm-II (NSGA-II)

Ever-increasing energy demand has led to geographic expansion of transmission lines and their complexity. In addition, higher reliability is expected in the transmission systemsdue to their vital role in power systems. It is very difficult to realize this goal by conventional monitoring and control methods. Thus, phasor measurement units (PMUs) are used to measure system parameters. Although in...

متن کامل

Pareto Optimal Reconfiguration of Power Distribution Systems Using a Genetic Algorithm Based on NSGA-II

Reconfiguration, by exchanging the functional links between the elements of the system, represents one of the most important measures which can improve the operational performance of a distribution system. The authors propose an original method, aiming at achieving such optimization through the reconfiguration of distribution systems taking into account various criteria in a flexible and robust...

متن کامل

A Fast Elitist Non-Dominated Sorting Genetic Algorithm for Multi-Objective Optimization: NSGA-II

Abstract. Multi-objective evolutionary algorithms which use non-dominated sorting and sharing have been mainly criticized for their (i) computational complexity (where is the number of objectives and is the population size), (ii) non-elitism approach, and (iii) the need for specifying a sharing parameter. In this paper, we suggest a non-dominated sorting based multi-objective evolutionary algor...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید


عنوان ژورنال:
journal of operation and automation in power engineering

ناشر: university of mohaghegh ardabili

ISSN 2322-4576

دوره 1

شماره 1 2007

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023